BIBLIOTHECA AUGUSTANA

 

Aristoteles

384 - 322 a. Chr. n.

 

Ἀναλυτικὰ ὕστερα

 

Βιβλίον Α´ 22 - 34

 

________________________________________________________

 

 

 

22

 

Ἐπὶ μὲν οὖν τῶν ἐν τῶι τί ἐστι κατηγορουμένων δῆλον·

εἰ γὰρ ἔστιν ὁρίσασθαι ἢ εἰ γνωστὸν τὸ τί ἦν εἶναι, τὰ δ᾽

ἄπειρα μὴ ἔστι διελθεῖν, ἀνάγκη πεπεράνθαι τὰ ἐν τῶι τί

83a

ἐστι κατηγορούμενα. καθόλου δὲ ὧδε λέγομεν. ἔστι γὰρ εἰ-

πεῖν ἀληθῶς τὸ λευκὸν βαδίζειν καὶ τὸ μέγα ἐκεῖνο ξύλον

εἶναι, καὶ πάλιν τὸ ξύλον μέγα εἶναι καὶ τὸν ἄνθρωπον βα-

δίζειν. ἕτερον δή ἐστι τὸ οὕτως εἰπεῖν καὶ τὸ ἐκείνως. ὅταν

5

μὲν γὰρ τὸ λευκὸν εἶναι φῶ ξύλον, τότε λέγω ὅτι ὧι συμ-

βέβηκε λευκῶι εἶναι ξύλον ἐστίν, ἀλλ᾽ οὐχ ὡς τὸ ὑποκείμε-

νον τῶι ξύλωι τὸ λευκόν ἐστι· καὶ γὰρ οὔτε λευκὸν ὂν οὔθ᾽ ὅπερ

λευκόν τι ἐγένετο ξύλον, ὥστ᾽ οὐκ ἔστιν ἀλλ᾽ ἢ κατὰ συμβε-

βηκός. ὅταν δὲ τὸ ξύλον λευκὸν εἶναι φῶ, οὐχ ὅτι ἕτερόν

10

τί ἐστι λευκόν, ἐκείνωι δὲ συμβέβηκε ξύλωι εἶναι, οἷον ὅταν

τὸ μουσικὸν λευκὸν εἶναι φῶ (τότε γὰρ ὅτι ὁ ἄνθρωπος

λευκός ἐστιν, ὧι συμβέβηκεν εἶναι μουσικῶι, λέγω), ἀλλὰ

τὸ ξύλον ἐστὶ τὸ ὑποκείμενον, ὅπερ καὶ ἐγένετο, οὐχ ἕτερόν

τι ὂν ἢ ὅπερ ξύλον ἢ ξύλον τί. εἰ δὴ δεῖ νομοθετῆσαι, ἔστω

15

τὸ οὕτω λέγειν κατηγορεῖν, τὸ δ᾽ ἐκείνως ἤτοι μηδαμῶς

κατηγορεῖν, ἢ κατηγορεῖν μὲν μὴ ἁπλῶς, κατὰ συμβεβη-

κὸς δὲ κατηγορεῖν. ἔστι δ᾽ ὡς μὲν τὸ λευκὸν τὸ κατηγορού-

μενον, ὡς δὲ τὸ ξύλον τὸ οὗ κατηγορεῖται. ὑποκείσθω δὴ

τὸ κατηγορούμενον κατηγορεῖσθαι ἀεί, οὗ κατηγορεῖται,

20

ἁπλῶς, ἀλλὰ μὴ κατὰ συμβεβηκός· οὕτω γὰρ αἱ ἀποδεί-

ξεις ἀποδεικνύουσιν. ὥστε ἢ ἐν τῶι τί ἐστιν ἢ ὅτι ποιὸν ἢ πο-

σὸν ἢ πρός τι ἢ ποιοῦν τι ἢ πάσχον ἢ ποὺ ἢ ποτέ, ὅταν ἓν καθ᾽

ἑνὸς κατηγορηθῆι.

 

Ἔτι τὰ μὲν οὐσίαν σημαίνοντα ὅπερ ἐκεῖνο ἢ ὅπερ

25

ἐκεῖνό τι σημαίνει καθ᾽ οὗ κατηγορεῖται· ὅσα δὲ μὴ οὐ-

σίαν σημαίνει, ἀλλὰ κατ᾽ ἄλλου ὑποκειμένου λέγεται

ὁ μὴ ἔστι μήτε ὅπερ ἐκεῖνο μήτε ὅπερ ἐκεῖνό τι, συμβε-

βηκότα, οἷον κατὰ τοῦ ἀνθρώπου τὸ λευκόν. οὐ γάρ ἐστιν

ὁ ἄνθρωπος οὔτε ὅπερ λευκὸν οὔτε ὅπερ λευκόν τι, ἀλλὰ ζῶιον

30

ἴσως· ὅπερ γὰρ ζῶιόν ἐστιν ὁ ἄνθρωπος. ὅσα δὲ μὴ οὐσίαν

σημαίνει, δεῖ κατά τινος ὑποκειμένου κατηγορεῖσθαι, καὶ

μὴ εἶναί τι λευκὸν ὁ οὐχ ἕτερόν τι ὂν λευκόν ἐστιν. τὰ

γὰρ εἴδη χαιρέτω· τερετίσματά τε γάρ ἐστι, καὶ εἰ ἔστιν,

οὐδὲν πρὸς τὸν λόγον ἐστίν· αἱ γὰρ ἀποδείξεις περὶ τῶν τοι-

35

ούτων εἰσίν.

 

Ἔτι εἰ μὴ ἔστι τόδε τοῦδε ποιότης κἀκεῖνο τούτου, μηδὲ

ποιότητος ποιότης, ἀδύνατον ἀντικατηγορεῖσθαι ἀλλήλων

οὕτως, ἀλλ᾽ ἀληθὲς μὲν ἐνδέχεται εἰπεῖν, ἀντικατηγορῆσαι

δ᾽ ἀληθῶς οὐκ ἐνδέχεται. ἢ γάρ τοι ὡς οὐσία κατηγορηθή-

83b

σεται, οἷον ἢ γένος ὂν ἢ διαφορὰ τοῦ κατηγορουμένου. ταῦτα

δὲ δέδεικται ὅτι οὐκ ἔσται ἄπειρα, οὔτ᾽ ἐπὶ τὸ κάτω οὔτ᾽ ἐπὶ

τὸ ἄνω (οἷον ἄνθρωπος δίπουν, τοῦτο ζῶιον, τοῦτο δ᾽ ἕτερον·

οὐδὲ τὸ ζῶιον κατ᾽ ἀνθρώπου, τοῦτο δὲ κατὰ Καλλίου, τοῦτο

5

δὲ κατ᾽ ἄλλου ἐν τῶι τί ἐστιν), τὴν μὲν γὰρ οὐσίαν ἅπασαν

ἔστιν ὁρίσασθαι τὴν τοιαύτην, τὰ δ᾽ ἄπειρα οὐκ ἔστι διεξελ-

θεῖν νοοῦντα. ὥστ᾽ οὔτ᾽ ἐπὶ τὸ ἄνω οὔτ᾽ ἐπὶ τὸ κάτω ἄπειρα·

ἐκείνην γὰρ οὐκ ἔστιν ὁρίσασθαι ἧς τὰ ἄπειρα κατηγορεῖται.

ὡς μὲν δὴ γένη ἀλλήλων οὐκ ἀντικατηγορηθήσεται· ἔσται

10

γὰρ αὐτὸ ὅπερ αὐτό τι. οὐδὲ μὴν τοῦ ποιοῦ ἢ τῶν ἄλλων

οὐδέν, ἂν μὴ κατὰ συμβεβηκὸς κατηγορηθῆι· πάντα γὰρ

ταῦτα συμβέβηκε καὶ κατὰ τῶν οὐσιῶν κατηγορεῖται. ἀλλὰ

δὴ ὅτι οὐδ᾽ εἰς τὸ ἄνω ἄπειρα ἔσται· ἑκάστου γὰρ κατηγορεῖ-

ται ὁ ἂν σημαίνηι ἢ ποιόν τι ἢ ποσόν τι ἤ τι τῶν τοιούτων

15

ἢ τὰ ἐν τῆι οὐσίαι· ταῦτα δὲ πεπέρανται, καὶ τὰ γένη τῶν

κατηγοριῶν πεπέρανται· ἢ γὰρ ποιὸν ἢ ποσὸν ἢ πρός τι ἢ

ποιοῦν ἢ πάσχον ἢ ποὺ ἢ ποτέ. Ὑπόκειται δὴ ἓν καθ᾽ ἑνὸς

κατηγορεῖσθαι, αὐτὰ δὲ αὑτῶν, ὅσα μὴ τί ἐστι, μὴ κατ-

ηγορεῖσθαι. συμβεβηκότα γάρ ἐστι πάντα, ἀλλὰ τὰ μὲν

20

καθ᾽ αὑτά, τὰ δὲ καθ᾽ ἕτερον τρόπον· ταῦτα δὲ πάντα

καθ᾽ ὑποκειμένου τινὸς κατηγορεῖσθαί φαμεν, τὸ δὲ συμβε-

βηκὸς οὐκ εἶναι ὑποκείμενόν τι· οὐδὲν γὰρ τῶν τοιούτων τί-

θεμεν εἶναι ὁ οὐχ ἕτερόν τι ὂν λέγεται ὁ λέγεται, ἀλλ᾽

αὐτὸ ἄλλου καὶ τοῦτο καθ᾽ ἑτέρου. οὔτ᾽ εἰς τὸ ἄνω

25

ἄρα ἓν καθ᾽ ἑνὸς οὔτ᾽ εἰς τὸ κάτω ὑπάρχειν λεχθήσεται.

καθ᾽ ὧν μὲν γὰρ λέγεται τὰ συμβεβηκότα, ὅσα ἐν τῆι οὐ-

σίαι ἑκάστου, ταῦτα δὲ οὐκ ἄπειρα· ἄνω δὲ ταῦτά τε καὶ

τὰ συμβεβηκότα, ἀμφότερα οὐκ ἄπειρα. ἀνάγκη ἄρα εἶναί

τι οὗ πρῶτόν τι κατηγορεῖται καὶ τούτου ἄλλο, καὶ τοῦτο

30

ἵστασθαι καὶ εἶναί τι ὁ οὐκέτι οὔτε κατ᾽ ἄλλου προτέρου οὔτε

κατ᾽ ἐκείνου ἄλλο πρότερον κατηγορεῖται.

 

Εἷς μὲν οὖν τρόπος λέγεται ἀποδείξεως οὗτος, ἔτι δ᾽

ἄλλος, εἰ ὧν πρότερα ἄττα κατηγορεῖται, ἔστι τούτων ἀπό-

δειξις, ὧν δ᾽ ἔστιν ἀπόδειξις, οὔτε βέλτιον ἔχειν ἐγχωρεῖ

35

πρὸς αὐτὰ τοῦ εἰδέναι, οὔτ᾽ εἰδέναι ἄνευ ἀποδείξεως, εἰ δὲ

τόδε διὰ τῶνδε γνώριμον, τάδε δὲ μὴ ἴσμεν μηδὲ βέλτιον

ἔχομεν πρὸς αὐτὰ τοῦ εἰδέναι, οὐδὲ τὸ διὰ τούτων γνώριμον

ἐπιστησόμεθα. εἰ οὖν ἔστι τι εἰδέναι δι᾽ ἀποδείξεως ἁπλῶς

καὶ μὴ ἐκ τινῶν μηδ᾽ ἐξ ὑποθέσεως, ἀνάγκη ἵστασθαι τὰς

84a

κατηγορίας τὰς μεταξύ. εἰ γὰρ μὴ ἵστανται, ἀλλ᾽ ἔστιν ἀεὶ

τοῦ ληφθέντος ἐπάνω, ἁπάντων ἔσται ἀπόδειξις· ὥστ᾽ εἰ τὰ

ἄπειρα μὴ ἐγχωρεῖ διελθεῖν, ὧν ἔστιν ἀπόδειξις, ταῦτ᾽ οὐκ

εἰσόμεθα δι᾽ ἀποδείξεως. εἰ οὖν μηδὲ βέλτιον ἔχομεν πρὸς

5

αὐτὰ τοῦ εἰδέναι, οὐκ ἔσται οὐδὲν ἐπίστασθαι δι᾽ ἀποδείξεως

ἁπλῶς, ἀλλ᾽ ἐξ ὑποθέσεως.

 

Λογικῶς μὲν οὖν ἐκ τούτων ἄν τις πιστεύσειε περὶ τοῦ

λεχθέντος, ἀναλυτικῶς δὲ διὰ τῶνδε φανερὸν συντομώτε-

ρον, ὅτι οὔτ᾽ ἐπὶ τὸ ἄνω οὔτ᾽ ἐπὶ τὸ κάτω ἄπειρα τὰ κατ-

10

ηγορούμενα ἐνδέχεται εἶναι ἐν ταῖς ἀποδεικτικαῖς ἐπιστήμαις,

περὶ ὧν ἡ σκέψις ἐστίν. ἡ μὲν γὰρ ἀπόδειξίς ἐστι τῶν ὅσα

ὑπάρχει καθ᾽ αὑτὰ τοῖς πράγμασιν. καθ᾽ αὑτὰ δὲ διττῶς·

ὅσα τε γὰρ [ἐν] ἐκείνοις ἐνυπάρχει ἐν τῶι τί ἐστι, καὶ οἷς αὐτὰ

ἐν τῶι τί ἐστιν ὑπάρχουσιν αὐτοῖς· οἷον τῶι ἀριθμῶι τὸ περιτ-

15

τόν, ὁ ὑπάρχει μὲν ἀριθμῶι, ἐνυπάρχει δ᾽ αὐτὸς ὁ ἀριθ-

μὸς ἐν τῶι λόγωι αὐτοῦ, καὶ πάλιν πλῆθος ἢ τὸ διαιρετὸν

ἐν τῶι λόγωι τῶι τοῦ ἀριθμοῦ ἐνυπάρχει. τούτων δ᾽ οὐδέτερα ἐν-

δέχεται ἄπειρα εἶναι, οὔθ᾽ ὡς τὸ περιττὸν τοῦ ἀριθμοῦ (πά-

λιν γὰρ ἂν τῶι περιττῶι ἄλλο εἴη ὧι ἐνυπῆρχεν ὑπάρ-

20

χοντι· τοῦτο δ᾽ εἰ ἔστι, πρῶτον ὁ ἀριθμὸς ἐνυπάρξει ὑπάρ-

χουσιν αὐτῶι· εἰ οὖν μὴ ἐνδέχεται ἄπειρα τοιαῦτα ὑπάρ-

χειν ἐν τῶι ἑνί, οὐδ᾽ ἐπὶ τὸ ἄνω ἔσται ἄπειρα· ἀλλὰ μὴν

ἀνάγκη γε πάντα ὑπάρχειν τῶι πρώτωι, οἷον τῶι ἀριθμῶι,

κἀκείνοις τὸν ἀριθμόν, ὥστ᾽ ἀντιστρέφοντα ἔσται, ἀλλ᾽ οὐχ

25

ὑπερτείνοντα)· οὐδὲ μὴν ὅσα ἐν τῶι τί ἐστιν ἐνυπάρχει, οὐδὲ

ταῦτα ἄπειρα· οὐδὲ γὰρ ἂν εἴη ὁρίσασθαι. ὥστ᾽ εἰ τὰ μὲν

κατηγορούμενα καθ᾽ αὑτὰ πάντα λέγεται, ταῦτα δὲ μὴ

ἄπειρα, ἵσταιτο ἂν τὰ ἐπὶ τὸ ἄνω, ὥστε καὶ ἐπὶ τὸ κάτω.

 

Εἰ δ᾽ οὕτω, καὶ τὰ ἐν τῶι μεταξὺ δύο ὅρων ἀεὶ πε-

30

περασμένα. εἰ δὲ τοῦτο, δῆλον ἤδη καὶ τῶν ἀποδείξεων ὅτι

ἀνάγκη ἀρχάς τε εἶναι, καὶ μὴ πάντων εἶναι ἀπόδειξιν,

ὅπερ ἔφαμέν τινας λέγειν κατ᾽ ἀρχάς. εἰ γὰρ εἰσὶν ἀρχαί,

οὔτε πάντ᾽ ἀποδεικτὰ οὔτ᾽ εἰς ἄπειρον οἷόν τε βαδίζειν· τὸ

γὰρ εἶναι τούτων ὁποτερονοῦν οὐδὲν ἄλλο ἐστὶν ἢ τὸ εἶναι μη-

35

δὲν διάστημα ἄμεσον καὶ ἀδιαίρετον, ἀλλὰ πάντα διαιρετά.

τῶι γὰρ ἐντὸς ἐμβάλλεσθαι ὅρον, ἀλλ᾽ οὐ τῶι προσλαμ-

βάνεσθαι ἀποδείκνυται τὸ ἀποδεικνύμενον, ὥστ᾽ εἰ τοῦτ᾽ εἰς

ἄπειρον ἐνδέχεται ἰέναι, ἐνδέχοιτ᾽ ἂν δύο ὅρων ἄπειρα με-

ταξὺ εἶναι μέσα. ἀλλὰ τοῦτ᾽ ἀδύνατον, εἰ ἵστανται αἱ κατ-

84b

ηγορίαι ἐπὶ τὸ ἄνω καὶ τὸ κάτω. ὅτι δὲ ἵστανται, δέδει-

κται λογικῶς μὲν πρότερον, ἀναλυτικῶς δὲ νῦν.

 

 

23

 

Δεδειγμένων δὲ τούτων φανερὸν ὅτι, ἐάν τι τὸ αὐτὸ

δυσὶν ὑπάρχηι, οἷον τὸ Α τῶι τε Γ καὶ τῶι Δ, μὴ κατ-

5

ηγορουμένου θατέρου κατὰ θατέρου, ἢ μηδαμῶς ἢ μὴ κατὰ

παντός, ὅτι οὐκ ἀεὶ κατὰ κοινόν τι ὑπάρξει. οἷον τῶι ἰσο-

σκελεῖ καὶ τῶι σκαληνεῖ τὸ δυσὶν ὀρθαῖς ἴσας ἔχειν κατὰ

κοινόν τι ὑπάρχει (ἧι γὰρ σχῆμά τι, ὑπάρχει, καὶ οὐχ

ἧι ἕτερον), τοῦτο δ᾽ οὐκ ἀεὶ οὕτως ἔχει. ἔστω γὰρ τὸ Β καθ᾽

10

ὁ τὸ Α τῶι Γ Δ ὑπάρχει. δῆλον τοίνυν ὅτι καὶ τὸ Β τῶι

Γ καὶ Δ κατ᾽ ἄλλο κοινόν, κἀκεῖνο καθ᾽ ἕτερον, ὥστε

δύο ὅρων μεταξὺ ἄπειροι ἂν ἐμπίπτοιεν ὅροι. ἀλλ᾽ ἀδύνα-

τον. κατὰ μὲν τοίνυν κοινόν τι ὑπάρχειν οὐκ ἀνάγκη ἀεὶ

τὸ αὐτὸ πλείοσιν, εἴπερ ἔσται ἄμεσα διαστήματα. ἐν μέν-

15

τοι τῶι αὐτῶι γένει καὶ ἐκ τῶν αὐτῶν ἀτόμων ἀνάγκη τοὺς

ὅρους εἶναι, εἴπερ τῶν καθ᾽ αὑτὸ ὑπαρχόντων ἔσται τὸ κοι-

νόν· οὐ γὰρ ἦν ἐξ ἄλλου γένους εἰς ἄλλο διαβῆναι τὰ δει-

κνύμενα.

 

Φανερὸν δὲ καὶ ὅτι, ὅταν τὸ Α τῶι Β ὑπάρχηι, εἰ

20

μὲν ἔστι τι μέσον, ἔστι δεῖξαι ὅτι τὸ Α τῶι Β ὑπάρχει, καὶ

στοιχεῖα τούτου ἔστι ταὐτὰ καὶ τοσαῦθ᾽ ὅσα μέσα ἐστίν· αἱ

γὰρ ἄμεσοι προτάσεις στοιχεῖα, ἢ πᾶσαι ἢ αἱ καθόλου. εἰ

δὲ μὴ ἔστιν, οὐκέτι ἔστιν ἀπόδειξις, ἀλλ᾽ ἡ ἐπὶ τὰς ἀρχὰς

ὁδὸς αὕτη ἐστίν. ὁμοίως δὲ καὶ εἰ τὸ Α τῶι Β μὴ ὑπάρχει,

25

εἰ μὲν ἔστιν ἢ μέσον ἢ πρότερον ὧι οὐχ ὑπάρχει, ἔστιν ἀπό-

δειξις, εἰ δὲ μή, οὐκ ἔστιν, ἀλλ᾽ ἀρχή, καὶ στοιχεῖα τοσαῦτ᾽

ἔστιν ὅσοι ὅροι· αἱ γὰρ τούτων προτάσεις ἀρχαὶ τῆς ἀπο-

δείξεώς εἰσιν. καὶ ὥσπερ ἔνιαι ἀρχαί εἰσιν ἀναπόδεικτοι, ὅτι

ἐστὶ τόδε τοδὶ καὶ ὑπάρχει τόδε τωιδί, οὕτω καὶ ὅτι οὐκ ἔστι

30

τόδε τοδὶ οὐδ᾽ ὑπάρχει τόδε τωιδί, ὥσθ᾽ αἱ μὲν εἶναί τι, αἱ

δὲ μὴ εἶναί τι ἔσονται ἀρχαί. Ὅταν δὲ δέηι δεῖξαι, ληπτέον

ὁ τοῦ Β πρῶτον κατηγορεῖται. ἔστω τὸ Γ, καὶ τούτου ὁμοίως

τὸ Δ. καὶ οὕτως ἀεὶ βαδίζοντι οὐδέποτ᾽ ἐξωτέρω πρότασις

οὐδ᾽ ὑπάρχον λαμβάνεται τοῦ Α ἐν τῶι δεικνύναι, ἀλλ᾽ ἀεὶ

35

τὸ μέσον πυκνοῦται, ἕως ἀδιαίρετα γένηται καὶ ἕν. ἔστι δ᾽

ἓν ὅταν ἄμεσον γένηται, καὶ μία πρότασις ἁπλῶς ἡ ἄμε-

σος. καὶ ὥσπερ ἐν τοῖς ἄλλοις ἡ ἀρχὴ ἁπλοῦν, τοῦτο δ᾽

οὐ ταὐτὸ πανταχοῦ, ἀλλ᾽ ἐν βάρει μὲν μνᾶ, ἐν δὲ μέλει

δίεσις, ἄλλο δ᾽ ἐν ἄλλωι, οὕτως ἐν συλλογισμῶι τὸ ἓν

85a

πρότασις ἄμεσος, ἐν δ᾽ ἀποδείξει καὶ ἐπιστήμηι ὁ νοῦς. ἐν

μὲν οὖν τοῖς δεικτικοῖς συλλογισμοῖς τοῦ ὑπάρχοντος οὐδὲν ἔξω

πίπτει, ἐν δὲ τοῖς στερητικοῖς, ἔνθα μὲν ὁ δεῖ ὑπάρχειν,

οὐδὲν τούτου ἔξω πίπτει, οἷον εἰ τὸ Α τῶι Β διὰ τοῦ Γ μή

5

(εἰ γὰρ τῶι μὲν Β παντὶ τὸ Γ, τῶι δὲ Γ μηδενὶ τὸ Α)· πά-

λιν ἂν δέηι ὅτι τῶι Γ τὸ Α οὐδενὶ ὑπάρχει, μέσον ληπτέον

τοῦ Α καὶ Γ, καὶ οὕτως ἀεὶ πορεύσεται. ἐὰν δὲ δέηι δεῖξαι

ὅτι τὸ Δ τῶι Ε οὐχ ὑπάρχει τῶι τὸ Γ τῶι μὲν Δ παντὶ

ὑπάρχειν, τῶι δὲ Ε μηδενί [ἢ μὴ παντί], τοῦ Ε οὐδέποτ᾽ ἔξω

10

πεσεῖται· τοῦτο δ᾽ ἐστὶν ὧι δεῖ ὑπάρχειν. ἐπὶ δὲ τοῦ τρίτου

τρόπου, οὔτε ἀφ᾽ οὗ δεῖ οὔτε ὁ δεῖ στερῆσαι οὐδέποτ᾽ ἔξω

βαδιεῖται.

 

 

24

 

Οὔσης δ᾽ ἀποδείξεως τῆς μὲν καθόλου τῆς δὲ κατὰ

μέρος, καὶ τῆς μὲν κατηγορικῆς τῆς δὲ στερητικῆς, ἀμφι-

15

σβητεῖται ποτέρα βελτίων· ὡς δ᾽ αὔτως καὶ περὶ τῆς ἀπο-

δεικνύναι λεγομένης καὶ τῆς εἰς τὸ ἀδύνατον ἀγούσης ἀπο-

δείξεως. πρῶτον μὲν οὖν ἐπισκεψώμεθα περὶ τῆς καθόλου

καὶ τῆς κατὰ μέρος· δηλώσαντες δὲ τοῦτο, καὶ περὶ τῆς

δεικνύναι λεγομένης καὶ τῆς εἰς τὸ ἀδύνατον εἴπωμεν.

 

20

Δόξειε μὲν οὖν τάχ᾽ ἄν τισιν ὡδὶ σκοποῦσιν ἡ κατὰ

μέρος εἶναι βελτίων. εἰ γὰρ καθ᾽ ἣν μᾶλλον ἐπιστάμεθα

ἀπόδειξιν βελτίων ἀπόδειξις (αὕτη γὰρ ἀρετὴ ἀποδείξεωσ),

μᾶλλον δ᾽ ἐπιστάμεθα ἕκαστον ὅταν αὐτὸ εἰδῶμεν καθ᾽

αὑτὸ ἢ ὅταν κατ᾽ ἄλλο (οἷον τὸν μουσικὸν Κορίσκον ὅταν

25

ὅτι ὁ Κορίσκος μουσικὸς ἢ ὅταν ὅτι ἅνθρωπος μουσικός·

ὁμοίως δὲ καὶ ἐπὶ τῶν ἄλλων), ἡ δὲ καθόλου ὅτι ἄλλο, οὐχ

ὅτι αὐτὸ τετύχηκεν ἐπιδείκνυσιν (οἷον ὅτι τὸ ἰσοσκελὲς οὐχ ὅτι

ἰσοσκελὲς ἀλλ᾽ ὅτι τρίγωνον), ἡ δὲ κατὰ μέρος ὅτι αὐτό· – εἰ

δὴ βελτίων μὲν ἡ καθ᾽ αὑτό, τοιαύτη δ᾽ ἡ κατὰ μέρος τῆς

30

καθόλου μᾶλλον, καὶ βελτίων ἂν ἡ κατὰ μέρος ἀπόδειξις

εἴη. ἔτι εἰ τὸ μὲν καθόλου μὴ ἔστι τι παρὰ τὰ καθ᾽ ἕκαστα,

ἡ δ᾽ ἀπόδειξις δόξαν ἐμποιεῖ εἶναί τι τοῦτο καθ᾽ ὁ ἀποδεί-

κνυσι, καί τινα φύσιν ὑπάρχειν ἐν τοῖς οὖσι ταύτην, οἷον

τριγώνου παρὰ τὰ τινὰ καὶ σχήματος παρὰ τὰ τινὰ καὶ

35

ἀριθμοῦ παρὰ τοὺς τινὰς ἀριθμούς, βελτίων δ᾽ ἡ περὶ ὄν-

τος ἢ μὴ ὄντος καὶ δι᾽ ἣν μὴ ἀπατηθήσεται ἢ δι᾽ ἥν, ἔστι

δ᾽ ἡ μὲν καθόλου τοιαύτη (προϊόντες γὰρ δεικνύουσιν ὥσπερ

περὶ τοῦ ἀνὰ λόγον, οἷον ὅτι ὁ ἂν ἦι τι τοιοῦτον ἔσται ἀνὰ

λόγον ὁ οὔτε γραμμὴ οὔτ᾽ ἀριθμὸς οὔτε στερεὸν οὔτ᾽ ἐπί-

85b

πεδον, ἀλλὰ παρὰ ταῦτά τι)· – εἰ οὖν καθόλου μὲν μᾶλλον

αὕτη, περὶ ὄντος δ᾽ ἧττον τῆς κατὰ μέρος καὶ ἐμποιεῖ δόξαν

ψευδῆ, χείρων ἂν εἴη ἡ καθόλου τῆς κατὰ μέρος.

 

Η πρῶτον μὲν οὐδὲν μᾶλλον ἐπὶ τοῦ καθόλου ἢ τοῦ κατὰ

5

μέρος ἅτερος λόγος ἐστίν; εἰ γὰρ τὸ δυσὶν ὀρθαῖς ὑπάρχει

μὴ ἧι ἰσοσκελὲς ἀλλ᾽ ἧι τρίγωνον, ὁ εἰδὼς ὅτι ἰσοσκελὲς ἧτ-

τον οἶδεν ἧι αὐτὸ ἢ ὁ εἰδὼς ὅτι τρίγωνον. ὅλως τε, εἰ μὲν μὴ

ὄντος ἧι τρίγωνον εἶτα δείκνυσιν, οὐκ ἂν εἴη ἀπόδειξις, εἰ δὲ

ὄντος, ὁ εἰδὼς ἕκαστον ἧι ἕκαστον ὑπάρχει μᾶλλον οἶδεν. εἰ δὴ

10

τὸ τρίγωνον ἐπὶ πλέον ἐστί, καὶ ὁ αὐτὸς λόγος, καὶ μὴ καθ᾽

ὁμωνυμίαν τὸ τρίγωνον, καὶ ὑπάρχει παντὶ τριγώνωι τὸ δύο,

οὐκ ἂν τὸ τρίγωνον ἧι ἰσοσκελές, ἀλλὰ τὸ ἰσοσκελὲς ἧι τρίγωνον,

ἔχοι τοιαύτας τὰς γωνίας. ὥστε ὁ καθόλου εἰδὼς μᾶλλον

οἶδεν ἧι ὑπάρχει ἢ ὁ κατὰ μέρος. βελτίων ἄρα ἡ καθό-

15

λου τῆς κατὰ μέρος. ἔτι εἰ μὲν εἴη τις λόγος εἷς καὶ μὴ

ὁμωνυμία τὸ καθόλου, εἴη τ᾽ ἂν οὐδὲν ἧττον ἐνίων τῶν κατὰ

μέρος, ἀλλὰ καὶ μᾶλλον, ὅσωι τὰ ἄφθαρτα ἐν ἐκείνοις

ἐστί, τὰ δὲ κατὰ μέρος φθαρτὰ μᾶλλον, ἔτι τε οὐδεμία

ἀνάγκη ὑπολαμβάνειν τι εἶναι τοῦτο παρὰ ταῦτα, ὅτι ἓν δη-

20

λοῖ, οὐδὲν μᾶλλον ἢ ἐπὶ τῶν ἄλλων ὅσα μὴ τὶ σημαίνει

ἀλλ᾽ ἢ ποιὸν ἢ πρός τι ἢ ποιεῖν. εἰ δὲ ἄρα, οὐχ ἡ ἀπόδει-

ξις αἰτία ἀλλ᾽ ὁ ἀκούων.

 

Ἔτι εἰ ἡ ἀπόδειξις μέν ἐστι συλλογισμὸς δεικτικὸς αἰ-

τίας καὶ τοῦ διὰ τί, τὸ καθόλου δ᾽ αἰτιώτερον (ὧι γὰρ καθ᾽

25

αὑτὸ ὑπάρχει τι, τοῦτο αὐτὸ αὑτῶι αἴτιον· τὸ δὲ καθόλου

πρῶτον· αἴτιον ἄρα τὸ καθόλου)· ὥστε καὶ ἡ ἀπόδειξις βελ-

τίων· μᾶλλον γὰρ τοῦ αἰτίου καὶ τοῦ διὰ τί ἐστιν. Ἔτι μέχρι

τούτου ζητοῦμεν τὸ διὰ τί, καὶ τότε οἰόμεθα εἰδέναι, ὅταν

μὴ ἦι ὅτι τι ἄλλο τοῦτο ἢ γινόμενον ἢ ὄν· τέλος γὰρ καὶ

30

πέρας τὸ ἔσχατον ἤδη οὕτως ἐστίν. οἷον τίνος ἕνεκα ἦλθεν;

ὅπως λάβηι τἀργύριον, τοῦτο δ᾽ ὅπως ἀποδῶι ὁ ὤφειλε, τοῦτο

δ᾽ ὅπως μὴ ἀδικήσηι· καὶ οὕτως ἰόντες, ὅταν μηκέτι δι᾽

ἄλλο μηδ᾽ ἄλλου ἕνεκα, διὰ τοῦτο ὡς τέλος φαμὲν ἐλ-

θεῖν καὶ εἶναι καὶ γίνεσθαι, καὶ τότε εἰδέναι μάλιστα διὰ τί

35

ἦλθεν. εἰ δὴ ὁμοίως ἔχει ἐπὶ πασῶν τῶν αἰτιῶν καὶ τῶν διὰ

τί, ἐπὶ δὲ τῶν ὅσα αἴτια οὕτως ὡς οὗ ἕνεκα οὕτως ἴσμεν

μάλιστα, καὶ ἐπὶ τῶν ἄλλων ἄρα τότε μάλιστα ἴσμεν, ὅταν

μηκέτι ὑπάρχηι τοῦτο ὅτι ἄλλο. ὅταν μὲν οὖν γινώσκωμεν

ὅτι τέτταρσιν αἱ ἔξω ἴσαι ὅτι ἰσοσκελές, ἔτι λείπεται διὰ

86a

τί τὸ ἰσοσκελές – ὅτι τρίγωνον, καὶ τοῦτο, ὅτι σχῆμα εὐ-

θύγραμμον. εἰ δὲ τοῦτο μηκέτι διότι ἄλλο, τότε μάλιστα

ἴσμεν. καὶ καθόλου δὲ τότε· ἡ καθόλου ἄρα βελτίων. Ἔτι

ὅσωι ἂν μᾶλλον κατὰ μέρος ἦι, εἰς τὰ ἄπειρα ἐμπίπτει, ἡ

5

δὲ καθόλου εἰς τὸ ἁπλοῦν καὶ τὸ πέρας. ἔστι δ᾽, ἧι μὲν

ἄπειρα, οὐκ ἐπιστητά, ἧι δὲ πεπέρανται, ἐπιστητά. ἧι ἄρα κα-

θόλου, μᾶλλον ἐπιστητὰ ἢ ἧι κατὰ μέρος. ἀποδεικτὰ ἄρα

μᾶλλον τὰ καθόλου. τῶν δ᾽ ἀποδεικτῶν μᾶλλον μᾶλλον

ἀπόδειξις· ἅμα γὰρ μᾶλλον τὰ πρός τι. βελτίων ἄρα ἡ

10

καθόλου, ἐπείπερ καὶ μᾶλλον ἀπόδειξις. Ἔτι εἰ αἱρετωτέρα καθ᾽

ἣν τοῦτο καὶ ἄλλο ἢ καθ᾽ ἣν τοῦτο μόνον οἶδεν· ὁ δὲ τὴν

καθόλου ἔχων οἶδε καὶ τὸ κατὰ μέρος, οὗτος δὲ τὴν καθό-

λου οὐκ οἶδεν· ὥστε κἂν οὕτως αἱρετωτέρα εἴη. Ἔτι δὲ ὧδε.

τὸ γὰρ καθόλου μᾶλλον δεικνύναι ἐστὶ τὸ διὰ μέσου δει-

15

κνύναι ἐγγυτέρω ὄντος τῆς ἀρχῆς. ἐγγυτάτω δὲ τὸ ἄμε-

σον· τοῦτο δ᾽ ἀρχή. εἰ οὖν ἡ ἐξ ἀρχῆς τῆς μὴ ἐξ ἀρχῆς,

ἡ μᾶλλον ἐξ ἀρχῆς τῆς ἧττον ἀκριβεστέρα ἀπόδειξις. ἔστι

δὲ τοιαύτη ἡ καθόλου μᾶλλον· κρείττων ‹ἄρ᾽› ἂν εἴη ἡ κα-

θόλου. οἷον εἰ ἔδει ἀποδεῖξαι τὸ Α κατὰ τοῦ Δ· μέσα τὰ

20

ἐφ᾽ ὧν Β Γ· ἀνωτέρω δὴ τὸ Β, ὥστε ἡ διὰ τούτου καθόλου

μᾶλλον.

 

Ἀλλὰ τῶν μὲν εἰρημένων ἔνια λογικά ἐστι· μάλιστα

δὲ δῆλον ὅτι ἡ καθόλου κυριωτέρα, ὅτι τῶν προτάσεων τὴν

μὲν προτέραν ἔχοντες ἴσμεν πως καὶ τὴν ὑστέραν καὶ ἔχομεν

25

δυνάμει, οἷον εἴ τις οἶδεν ὅτι πᾶν τρίγωνον δυσὶν ὀρθαῖς,

οἶδέ πως καὶ τὸ ἰσοσκελὲς ὅτι δύο ὀρθαῖς, δυνάμει, καὶ

εἰ μὴ οἶδε τὸ ἰσοσκελὲς ὅτι τρίγωνον· ὁ δὲ ταύτην ἔχων

τὴν πρότασιν τὸ καθόλου οὐδαμῶς οἶδεν, οὔτε δυνάμει οὔτ᾽

ἐνεργείαι. καὶ ἡ μὲν καθόλου νοητή, ἡ δὲ κατὰ μέρος εἰς

30

αἴσθησιν τελευτᾶι.

 

 

25

 

Ὅτι μὲν οὖν ἡ καθόλου βελτίων τῆς κατὰ μέρος, το-

σαῦθ᾽ ἡμῖν εἰρήσθω· ὅτι δ᾽ ἡ δεικτικὴ τῆς στερητικῆς, ἐντεῦ-

θεν δῆλον. ἔστω γὰρ αὕτη ἡ ἀπόδειξις βελτίων τῶν ἄλλων

τῶν αὐτῶν ὑπαρχόντων, ἡ ἐξ ἐλαττόνων αἰτημάτων ἢ ὑπο-

35

θέσεων ἢ προτάσεων. εἰ γὰρ γνώριμοι ὁμοίως, τὸ θᾶττον

γνῶναι διὰ τούτων ὑπάρξει· τοῦτο δ᾽ αἱρετώτερον. λόγος δὲ

τῆς προτάσεως, ὅτι βελτίων ἡ ἐξ ἐλαττόνων, καθόλου ὅδε·

εἰ γὰρ ὁμοίως εἴη τὸ γνώριμα εἶναι τὰ μέσα, τὰ δὲ πρό-

τερα γνωριμώτερα, ἔστω ἡ μὲν διὰ μέσων ἀπόδειξις τῶν

86b

Β Γ Δ ὅτι τὸ Α τῶι Ε ὑπάρχει, ἡ δὲ διὰ τῶν Ζ Η ὅτι

τὸ Α τῶι Ε. ὁμοίως δὴ ἔχει τὸ ὅτι τὸ Α τῶι Δ ὑπάρχει

καὶ τὸ Α τῶι Ε. τὸ δ᾽ ὅτι τὸ Α τῶι Δ πρότερον καὶ γνω-

ριμώτερον ἢ ὅτι τὸ Α τῶι Ε· διὰ γὰρ τούτου ἐκεῖνο ἀπο-

5

δείκνυται, πιστότερον δὲ τὸ δι᾽ οὗ. καὶ ἡ διὰ τῶν ἐλατ-

τόνων ἄρα ἀπόδειξις βελτίων τῶν ἄλλων τῶν αὐτῶν ὑπαρ-

χόντων. ἀμφότεραι μὲν οὖν διά τε ὅρων τριῶν καὶ προτά-

σεων δύο δείκνυνται, ἀλλ᾽ ἡ μὲν εἶναί τι λαμβάνει, ἡ δὲ

καὶ εἶναι καὶ μὴ εἶναί τι· διὰ πλειόνων ἄρα, ὥστε χείρων.

 

10

Ἔτι ἐπειδὴ δέδεικται ὅτι ἀδύνατον ἀμφοτέρων οὐσῶν

στερητικῶν τῶν προτάσεων γενέσθαι συλλογισμόν, ἀλλὰ τὴν

μὲν δεῖ τοιαύτην εἶναι, τὴν δ᾽ ὅτι ὑπάρχει, ἔτι πρὸς τούτωι

δεῖ τόδε λαβεῖν. τὰς μὲν γὰρ κατηγορικὰς αὐξανομένης τῆς

ἀποδείξεως ἀναγκαῖον γίνεσθαι πλείους, τὰς δὲ στερητικὰς

15

ἀδύνατον πλείους εἶναι μιᾶς ἐν ἅπαντι συλλογισμῶι. ἔστω

γὰρ μηδενὶ ὑπάρχον τὸ Α ἐφ᾽ ὅσων τὸ Β, τῶι δὲ Γ ὑπάρ-

χον παντὶ τὸ Β. ἂν δὴ δέηι πάλιν αὔξειν ἀμφοτέρας τὰς

προτάσεις, μέσον ἐμβλητέον. τοῦ μὲν Α Β ἔστω τὸ Δ, τοῦ δὲ

Β Γ τὸ Ε. τὸ μὲν δὴ Ε φανερὸν ὅτι κατηγορικόν, τὸ δὲ Δ

20

τοῦ μὲν Β κατηγορικόν, πρὸς δὲ τὸ Α στερητικὸν κεῖται.

τὸ μὲν γὰρ Δ παντὸς τοῦ Β, τὸ δὲ Α οὐδενὶ δεῖ τῶν Δ

ὑπάρχειν. γίνεται οὖν μία στερητικὴ πρότασις ἡ τὸ Α Δ. ὁ

δ᾽ αὐτὸς τρόπος καὶ ἐπὶ τῶν ἑτέρων συλλογισμῶν. ἀεὶ γὰρ

τὸ μέσον τῶν κατηγορικῶν ὅρων κατηγορικὸν ἐπ᾽ ἀμφότερα·

25

τοῦ δὲ στερητικοῦ ἐπὶ θάτερα στερητικὸν ἀναγκαῖον εἶναι, ὥστε

αὕτη μία τοιαύτη γίνεται πρότασις, αἱ δ᾽ ἄλλαι κατηγο-

ρικαί. εἰ δὴ γνωριμώτερον δι᾽ οὗ δείκνυται καὶ πιστότερον,

δείκνυται δ᾽ ἡ μὲν στερητικὴ διὰ τῆς κατηγορικῆς, αὕτη δὲ

δι᾽ ἐκείνης οὐ δείκνυται, προτέρα καὶ γνωριμωτέρα οὖσα

30

καὶ πιστοτέρα βελτίων ἂν εἴη. ἔτι εἰ ἀρχὴ συλλογισμοῦ ἡ

καθόλου πρότασις ἄμεσος, ἔστι δ᾽ ἐν μὲν τῆι δεικτικῆι κατα-

φατικὴ ἐν δὲ τῆι στερητικῆι ἀποφατικὴ ἡ καθόλου πρό-

τασις, ἡ δὲ καταφατικὴ τῆς ἀποφατικῆς προτέρα καὶ

γνωριμωτέρα (διὰ γὰρ τὴν κατάφασιν ἡ ἀπόφασις γνώ-

35

ριμος, καὶ προτέρα ἡ κατάφασις, ὥσπερ καὶ τὸ εἶναι

τοῦ μὴ εἶναι)· ὥστε βελτίων ἡ ἀρχὴ τῆς δεικτικῆς ἢ τῆς

στερητικῆς· ἡ δὲ βελτίοσιν ἀρχαῖς χρωμένη βελτίων. ἔτι

ἀρχοειδεστέρα· ἄνευ γὰρ τῆς δεικνυούσης οὐκ ἔστιν ἡ στε-

ρητική.

 

 

26

 

87a

Ἐπεὶ δ᾽ ἡ κατηγορικὴ τῆς στερητικῆς βελτίων, δῆλον

ὅτι καὶ τῆς εἰς τὸ ἀδύνατον ἀγούσης. δεῖ δ᾽ εἰδέναι τίς ἡ

διαφορὰ αὐτῶν. ἔστω δὴ τὸ Α μηδενὶ ὑπάρχον τῶι Β, τῶι

δὲ Γ τὸ Β παντί· ἀνάγκη δὴ τῶι Γ μηδενὶ ὑπάρχειν τὸ Α.

5

οὕτω μὲν οὖν ληφθέντων δεικτικὴ ἡ στερητικὴ ἂν εἴη ἀπόδειξις

ὅτι τὸ Α τῶι Γ οὐχ ὑπάρχει. ἡ δ᾽ εἰς τὸ ἀδύνατον ὧδ᾽

ἔχει. εἰ δέοι δεῖξαι ὅτι τὸ Α τῶι Β οὐχ ὑπάρχει, ληπτέον

ὑπάρχειν, καὶ τὸ Β τῶι Γ, ὥστε συμβαίνει τὸ Α τῶι Γ

ὑπάρχειν. τοῦτο δ᾽ ἔστω γνώριμον καὶ ὁμολογούμενον ὅτι

10

ἀδύνατον. οὐκ ἄρα οἷόν τε τὸ Α τῶι Β ὑπάρχειν. εἰ οὖν τὸ

Β τῶι Γ ὁμολογεῖται ὑπάρχειν, τὸ Α τῶι Β ἀδύνατον ὑπάρ-

χειν. οἱ μὲν οὖν ὅροι ὁμοίως τάττονται, διαφέρει δὲ τὸ

ὁποτέρα ἂν ἦι γνωριμωτέρα ἡ πρότασις ἡ στερητική, πότερον

ὅτι τὸ Α τῶι Β οὐχ ὑπάρχει ἢ ὅτι τὸ Α τῶι Γ. ὅταν μὲν

15

οὖν ἦι τὸ συμπέρασμα γνωριμώτερον ὅτι οὐκ ἔστιν, ἡ εἰς τὸ

ἀδύνατον γίνεται ἀπόδειξις, ὅταν δ᾽ ἡ ἐν τῶι συλλογισμῶι,

ἡ ἀποδεικτική. φύσει δὲ προτέρα ἡ ὅτι τὸ Α τῶι Β ἢ ὅτι

τὸ Α τῶι Γ. πρότερα γάρ ἐστι τοῦ συμπεράσματος ἐξ ὧν

τὸ συμπέρασμα· ἔστι δὲ τὸ μὲν Α τῶι Γ μὴ ὑπάρχειν συμ-

20

πέρασμα, τὸ δὲ Α τῶι Β ἐξ οὗ τὸ συμπέρασμα. οὐ γὰρ

εἰ συμβαίνει ἀναιρεῖσθαί τι, τοῦτο συμπέρασμά ἐστιν, ἐκεῖνα

δὲ ἐξ ὧν, ἀλλὰ τὸ μὲν ἐξ οὗ συλλογισμός ἐστιν ὁ ἂν

οὕτως ἔχηι ὥστε ἢ ὅλον πρὸς μέρος ἢ μέρος πρὸς ὅλον ἔχειν,

αἱ δὲ τὸ Α Γ καὶ Β Γ προτάσεις οὐκ ἔχουσιν οὕτω πρὸς

25

ἀλλήλας. εἰ οὖν ἡ ἐκ γνωριμωτέρων καὶ προτέρων κρείττων,

εἰσὶ δ᾽ ἀμφότεραι ἐκ τοῦ μὴ εἶναί τι πισταί, ἀλλ᾽ ἡ μὲν

ἐκ προτέρου ἡ δ᾽ ἐξ ὑστέρου, βελτίων ἁπλῶς ἂν εἴη τῆς

εἰς τὸ ἀδύνατον ἡ στερητικὴ ἀπόδειξις, ὥστε καὶ ἡ ταύτης

βελτίων ἡ κατηγορικὴ δῆλον ὅτι καὶ τῆς εἰς τὸ ἀδύνατόν

30

ἐστι βελτίων.

 

 

27

 

Ἀκριβεστέρα δ᾽ ἐπιστήμη ἐπιστήμης καὶ προτέρα ἥ τε

τοῦ ὅτι καὶ διότι ἡ αὐτή, ἀλλὰ μὴ χωρὶς τοῦ ὅτι τῆς τοῦ

διότι, καὶ ἡ μὴ καθ᾽ ὑποκειμένου τῆς καθ᾽ ὑποκειμένου,

οἷον ἀριθμητικὴ ἁρμονικῆς, καὶ ἡ ἐξ ἐλαττόνων τῆς ἐκ προσ-

35

θέσεως, οἷον γεωμετρίας ἀριθμητική. λέγω δ᾽ ἐκ προσθέ-

σεως, οἷον μονὰς οὐσία ἄθετος, στιγμὴ δὲ οὐσία θετός· ταύ-

την ἐκ προσθέσεως.

 

 

28

 

Μία δ᾽ ἐπιστήμη ἐστὶν ἡ ἑνὸς γένους, ὅσα ἐκ τῶν πρώ-

των σύγκειται καὶ μέρη ἐστὶν ἢ πάθη τούτων καθ᾽ αὑτά. ἑτέρα

δ᾽ ἐπιστήμη ἐστὶν ἑτέρας, ὅσων αἱ ἀρχαὶ μήτ᾽ ἐκ τῶν αὐ-

87b

τῶν μήθ᾽ ἅτεραι ἐκ τῶν ἑτέρων. τούτου δὲ σημεῖον, ὅταν εἰς

τὰ ἀναπόδεικτα ἔλθηι· δεῖ γὰρ αὐτὰ ἐν τῶι αὐτῶι γένει εἶ-

ναι τοῖς ἀποδεδειγμένοις. σημεῖον δὲ καὶ τούτου, ὅταν τὰ

δεικνύμενα δι᾽ αὐτῶν ἐν ταὐτῶι γένει ὦσι καὶ συγγενῆ.

 

 

29

 

5

Πλείους δ᾽ ἀποδείξεις εἶναι τοῦ αὐτοῦ ἐγχωρεῖ οὐ μόνον

ἐκ τῆς αὐτῆς συστοιχίας λαμβάνοντι μὴ τὸ συνεχὲς μέσον,

οἷον τῶν Α Β τὸ Γ καὶ Δ καὶ Ζ, ἀλλὰ καὶ ἐξ ἑτέρας. οἷον

ἔστω τὸ Α μεταβάλλειν, τὸ δ᾽ ἐφ᾽ ὧι Δ κινεῖσθαι, τὸ δὲ Β

ἥδεσθαι, καὶ πάλιν τὸ Η ἠρεμίζεσθαι. ἀληθὲς οὖν καὶ τὸ Δ

10

τοῦ Β καὶ τὸ Α τοῦ Δ κατηγορεῖν· ὁ γὰρ ἡδόμενος κινεῖται

καὶ τὸ κινούμενον μεταβάλλει. πάλιν τὸ Α τοῦ Η καὶ τὸ Η

τοῦ Β ἀληθὲς κατηγορεῖν· πᾶς γὰρ ὁ ἡδόμενος ἠρεμίζεται

καὶ ὁ ἠρεμιζόμενος μεταβάλλει. ὥστε δι᾽ ἑτέρων μέσων καὶ

οὐκ ἐκ τῆς αὐτῆς συστοιχίας ὁ συλλογισμός. οὐ μὴν ὥστε μη-

15

δέτερον κατὰ μηδετέρου λέγεσθαι τῶν μέσων· ἀνάγκη γὰρ

τῶι αὐτῶι τινι ἄμφω ὑπάρχειν. ἐπισκέψασθαι δὲ καὶ διὰ

τῶν ἄλλων σχημάτων ὁσαχῶς ἐνδέχεται τοῦ αὐτοῦ γενέσθαι

συλλογισμόν.

 

 

30

 

Τοῦ δ᾽ ἀπὸ τύχης οὐκ ἔστιν ἐπιστήμη δι᾽ ἀποδείξεως.

20

οὔτε γὰρ ὡς ἀναγκαῖον οὔθ᾽ ὡς ἐπὶ τὸ πολὺ τὸ ἀπὸ τύχης

ἐστίν, ἀλλὰ τὸ παρὰ ταῦτα γινόμενον· ἡ δ᾽ ἀπόδειξις θα-

τέρου τούτων. πᾶς γὰρ συλλογισμὸς ἢ δι᾽ ἀναγκαίων ἢ

διὰ τῶν ὡς ἐπὶ τὸ πολὺ προτάσεων· καὶ εἰ μὲν αἱ προτά-

σεις ἀναγκαῖαι, καὶ τὸ συμπέρασμα ἀναγκαῖον, εἰ δ᾽ ὡς

25

ἐπὶ τὸ πολύ, καὶ τὸ συμπέρασμα τοιοῦτον. ὥστ᾽ εἰ τὸ ἀπὸ

τύχης μήθ᾽ ὡς ἐπὶ τὸ πολὺ μήτ᾽ ἀναγκαῖον, οὐκ ἂν εἴη

αὐτοῦ ἀπόδειξις.

 

 

31

 

Οὐδὲ δι᾽ αἰσθήσεως ἔστιν ἐπίστασθαι. εἰ γὰρ καὶ ἔστιν

ἡ αἴσθησις τοῦ τοιοῦδε καὶ μὴ τοῦδέ τινος, ἀλλ᾽ αἰσθάνεσθαί

30

γε ἀναγκαῖον τόδε τι καὶ ποὺ καὶ νῦν. τὸ δὲ καθόλου καὶ

ἐπὶ πᾶσιν ἀδύνατον αἰσθάνεσθαι· οὐ γὰρ τόδε οὐδὲ νῦν· οὐ

γὰρ ἂν ἦν καθόλου· τὸ γὰρ ἀεὶ καὶ πανταχοῦ καθόλου

φαμὲν εἶναι. ἐπεὶ οὖν αἱ μὲν ἀποδείξεις καθόλου, ταῦτα δ᾽

οὐκ ἔστιν αἰσθάνεσθαι, φανερὸν ὅτι οὐδ᾽ ἐπίστασθαι δι᾽ αἰσθή-

35

σεως ἔστιν, ἀλλὰ δῆλον ὅτι καὶ εἰ ἦν αἰσθάνεσθαι τὸ τρί-

γωνον ὅτι δυσὶν ὀρθαῖς ἴσας ἔχει τὰς γωνίας, ἐζητοῦμεν ἂν

ἀπόδειξιν καὶ οὐχ ὥσπερ φασί τινες ἠπιστάμεθα· αἰσθάνε-

σθαι μὲν γὰρ ἀνάγκη καθ᾽ ἕκαστον, ἡ δ᾽ ἐπιστήμη τὸ τὸ

καθόλου γνωρίζειν ἐστίν. διὸ καὶ εἰ ἐπὶ τῆς σελήνης ὄντες

ἑωρῶμεν ἀντιφράττουσαν τὴν γῆν, οὐκ ἂν ἤιδειμεν τὴν αἰτίαν

88a

τῆς ἐκλείψεως. ἠισθανόμεθα γὰρ ἂν ὅτι νῦν ἐκλείπει, καὶ

οὐ διότι ὅλως· οὐ γὰρ ἦν τοῦ καθόλου αἴσθησις. οὐ μὴν ἀλλ᾽

ἐκ τοῦ θεωρεῖν τοῦτο πολλάκις συμβαῖνον τὸ καθόλου ἂν θη-

ρεύσαντες ἀπόδειξιν εἴχομεν· ἐκ γὰρ τῶν καθ᾽ ἕκαστα πλει-

5

όνων τὸ καθόλου δῆλον. τὸ δὲ καθόλου τίμιον, ὅτι δηλοῖ τὸ

αἴτιον· ὥστε περὶ τῶν τοιούτων ἡ καθόλου τιμιωτέρα τῶν αἰ-

σθήσεων καὶ τῆς νοήσεως, ὅσων ἕτερον τὸ αἴτιον· περὶ δὲ

τῶν πρώτων ἄλλος λόγος.

 

Φανερὸν οὖν ὅτι ἀδύνατον τῶι αἰσθάνεσθαι ἐπίστασθαί τι

10

τῶν ἀποδεικτῶν, εἰ μή τις τὸ αἰσθάνεσθαι τοῦτο λέγει, τὸ

ἐπιστήμην ἔχειν δι᾽ ἀποδείξεως. ἔστι μέντοι ἔνια ἀναγόμενα

εἰς αἰσθήσεως ἔκλειψιν ἐν τοῖς προβλήμασιν. ἔνια γὰρ εἰ

ἑωρῶμεν οὐκ ἂν ἐζητοῦμεν, οὐχ ὡς εἰδότες τῶι ὁρᾶν, ἀλλ᾽ ὡς

ἔχοντες τὸ καθόλου ἐκ τοῦ ὁρᾶν. οἷον εἰ τὴν ὕαλον τετρυπη-

15

μένην ἑωρῶμεν καὶ τὸ φῶς διιόν, δῆλον ἂν ἦν καὶ διὰ τί

καίει, τῶι ὁρᾶν μὲν χωρὶς ἐφ᾽ ἑκάστης, νοῆσαι δ᾽ ἅμα ὅτι

ἐπὶ πασῶν οὕτως.

 

 

32

 

Τὰς δ᾽ αὐτὰς ἀρχὰς ἁπάντων εἶναι τῶν συλλογισμῶν

ἀδύνατον, πρῶτον μὲν λογικῶς θεωροῦσιν. οἱ μὲν γὰρ ἀλη-

20

θεῖς εἰσι τῶν συλλογισμῶν, οἱ δὲ ψευδεῖς. καὶ γὰρ εἰ ἔστιν

ἀληθὲς ἐκ ψευδῶν συλλογίσασθαι, ἀλλ᾽ ἅπαξ τοῦτο γίνεται,

οἷον εἰ τὸ Α κατὰ τοῦ Γ ἀληθές, τὸ δὲ μέσον τὸ Β ψεῦ-

δος· οὔτε γὰρ τὸ Α τῶι Β ὑπάρχει οὔτε τὸ Β τῶι Γ. ἀλλ᾽

ἐὰν τούτων μέσα λαμβάνηται τῶν προτάσεων, ψευδεῖς

25

ἔσονται διὰ τὸ πᾶν συμπέρασμα ψεῦδος ἐκ ψευδῶν εἶναι,

τὰ δ᾽ ἀληθῆ ἐξ ἀληθῶν, ἕτερα δὲ τὰ ψευδῆ καὶ τἀληθῆ.

εἶτα οὐδὲ τὰ ψευδῆ ἐκ τῶν αὐτῶν ἑαυτοῖς· ἔστι γὰρ ψευδῆ

ἀλλήλοις καὶ ἐναντία καὶ ἀδύνατα ἅμα εἶναι, οἷον τὸ τὴν

δικαιοσύνην εἶναι ἀδικίαν ἢ δειλίαν, καὶ τὸν ἄνθρωπον ἵππον

30

ἢ βοῦν, ἢ τὸ ἴσον μεῖζον ἢ ἔλαττον. Ἐκ δὲ τῶν κειμένων

ὧδε· οὐδὲ γὰρ τῶν ἀληθῶν αἱ αὐταὶ ἀρχαὶ πάντων. ἕτεραι

γὰρ πολλῶν τῶι γένει αἱ ἀρχαί, καὶ οὐδ᾽ ἐφαρμόττουσαι,

οἷον αἱ μονάδες ταῖς στιγμαῖς οὐκ ἐφαρμόττουσιν· αἱ μὲν

γὰρ οὐκ ἔχουσι θέσιν, αἱ δὲ ἔχουσιν. ἀνάγκη δέ γε ἢ εἰς

35

μέσα ἁρμόττειν ἢ ἄνωθεν ἢ κάτωθεν, ἢ τοὺς μὲν εἴσω ἔχειν

τοὺς δ᾽ ἔξω τῶν ὅρων. ἀλλ᾽ οὐδὲ τῶν κοινῶν ἀρχῶν οἷόν τ᾽

εἶναί τινας ἐξ ὧν ἅπαντα δειχθήσεται· λέγω δὲ κοινὰς

88b

οἷον τὸ πᾶν φάναι ἢ ἀποφάναι. τὰ γὰρ γένη τῶν ὄντων

ἕτερα, καὶ τὰ μὲν τοῖς ποσοῖς τὰ δὲ τοῖς ποιοῖς ὑπάρχει

μόνοις, μεθ᾽ ὧν δείκνυται διὰ τῶν κοινῶν. ἔτι αἱ ἀρχαὶ οὐ

πολλῶι ἐλάττους τῶν συμπερασμάτων· ἀρχαὶ μὲν γὰρ αἱ

5

προτάσεις, αἱ δὲ προτάσεις ἢ προσλαμβανομένου ὅρου ἢ ἐμ-

βαλλομένου εἰσίν. ἔτι τὰ συμπεράσματα ἄπειρα, οἱ δ᾽ ὅροι

πεπερασμένοι. ἔτι αἱ ἀρχαὶ αἱ μὲν ἐξ ἀνάγκης, αἱ δ᾽ ἐν-

δεχόμεναι.

 

Οὕτω μὲν οὖν σκοπουμένοις ἀδύνατον τὰς αὐτὰς εἶναι

10

πεπερασμένας, ἀπείρων ὄντων τῶν συμπερασμάτων. εἰ δ᾽

ἄλλως πως λέγοι τις, οἷον ὅτι αἱδὶ μὲν γεωμετρίας αἱδὶ δὲ

λογισμῶν αἱδὶ δὲ ἰατρικῆς, τί ἂν εἴη τὸ λεγόμενον ἄλλο

πλὴν ὅτι εἰσὶν ἀρχαὶ τῶν ἐπιστημῶν; τὸ δὲ τὰς αὐτὰς φά-

ναι γελοῖον, ὅτι αὐταὶ αὑταῖς αἱ αὐταί· πάντα γὰρ οὕτω

15

γίγνεται ταὐτά. ἀλλὰ μὴν οὐδὲ τὸ ἐξ ἁπάντων δείκνυσθαι

ὁτιοῦν, τοῦτ᾽ ἐστὶ τὸ ζητεῖν ἁπάντων εἶναι τὰς αὐτὰς ἀρχάς·

λίαν γὰρ εὔηθες. οὔτε γὰρ ἐν τοῖς φανεροῖς μαθήμασι τοῦτο

γίνεται, οὔτ᾽ ἐν τῆι ἀναλύσει δυνατόν· αἱ γὰρ ἄμεσοι προ-

τάσεις ἀρχαί, ἕτερον δὲ συμπέρασμα προσληφθείσης γίνε-

20

ται προτάσεως ἀμέσου. εἰ δὲ λέγοι τις τὰς πρώτας ἀμέσους

προτάσεις, ταύτας εἶναι ἀρχάς, μία ἐν ἑκάστωι γένει ἐστίν. εἰ

δὲ μήτ᾽ ἐξ ἁπασῶν ὡς δέον δείκνυσθαι ὁτιοῦν μήθ᾽ οὕτως ἑτέ-

ρας ὥσθ᾽ ἑκάστης ἐπιστήμης εἶναι ἑτέρας, λείπεται εἰ συγ-

γενεῖς αἱ ἀρχαὶ πάντων, ἀλλ᾽ ἐκ τωνδὶ μὲν ταδί, ἐκ δὲ

25

τωνδὶ ταδί. φανερὸν δὲ καὶ τοῦθ᾽ ὅτι οὐκ ἐνδέχεται· δέδει-

κται γὰρ ὅτι ἄλλαι ἀρχαὶ τῶι γένει εἰσὶν αἱ τῶν διαφό-

ρων τῶι γένει. αἱ γὰρ ἀρχαὶ διτταί, ἐξ ὧν τε καὶ περὶ ὅ·

αἱ μὲν οὖν ἐξ ὧν κοιναί, αἱ δὲ περὶ ὁ ἴδιαι, οἷον ἀριθμός,

μέγεθος.

 

 

33

 

30

Τὸ δ᾽ ἐπιστητὸν καὶ ἐπιστήμη διαφέρει τοῦ δοξαστοῦ καὶ

δόξης, ὅτι ἡ μὲν ἐπιστήμη καθόλου καὶ δι᾽ ἀναγκαίων, τὸ

δ᾽ ἀναγκαῖον οὐκ ἐνδέχεται ἄλλως ἔχειν. ἔστι δέ τινα ἀληθῆ

μὲν καὶ ὄντα, ἐνδεχόμενα δὲ καὶ ἄλλως ἔχειν. δῆλον οὖν

ὅτι περὶ μὲν ταῦτα ἐπιστήμη οὐκ ἔστιν· εἴη γὰρ ἂν ἀδύνατα

35

ἄλλως ἔχειν τὰ δυνατὰ ἄλλως ἔχειν. ἀλλὰ μὴν οὐδὲ νοῦς

(λέγω γὰρ νοῦν ἀρχὴν ἐπιστήμησ) οὐδ᾽ ἐπιστήμη ἀναπόδεικτος·

τοῦτο δ᾽ ἐστὶν ὑπόληψις τῆς ἀμέσου προτάσεως. ἀληθὴς δ᾽

89a

ἐστὶ νοῦς καὶ ἐπιστήμη καὶ δόξα καὶ τὸ διὰ τούτων λεγό-

μενον· ὥστε λείπεται δόξαν εἶναι περὶ τὸ ἀληθὲς μὲν ἢ ψεῦ-

δος, ἐνδεχόμενον δὲ καὶ ἄλλως ἔχειν. τοῦτο δ᾽ ἐστὶν ὑπό-

ληψις τῆς ἀμέσου προτάσεως καὶ μὴ ἀναγκαίας. καὶ ὁμο-

5

λογούμενον δ᾽ οὕτω τοῖς φαινομένοις· ἥ τε γὰρ δόξα ἀβέ-

βαιον, καὶ ἡ φύσις ἡ τοιαύτη. πρὸς δὲ τούτοις οὐδεὶς οἴε-

ται δοξάζειν, ὅταν οἴηται ἀδύνατον ἄλλως ἔχειν, ἀλλ᾽ ἐπί-

στασθαι· ἀλλ᾽ ὅταν εἶναι μὲν οὕτως, οὐ μὴν ἀλλὰ καὶ ἄλλως

οὐδὲν κωλύειν, τότε δοξάζειν, ὡς τοῦ μὲν τοιούτου δόξαν οὖσαν,

10

τοῦ δ᾽ ἀναγκαίου ἐπιστήμην.

 

Πῶς οὖν ἔστι τὸ αὐτὸ δοξάσαι καὶ ἐπίστασθαι, καὶ διὰ

τί οὐκ ἔσται ἡ δόξα ἐπιστήμη, εἴ τις θήσει ἅπαν ὁ οἶδεν ἐν-

δέχεσθαι δοξάζειν; ἀκολουθήσει γὰρ ὁ μὲν εἰδὼς ὁ δὲ δοξά-

ζων διὰ τῶν μέσων, ἕως εἰς τὰ ἄμεσα ἔλθηι, ὥστ᾽ εἴπερ

15

ἐκεῖνος οἶδε, καὶ ὁ δοξάζων οἶδεν. ὥσπερ γὰρ καὶ τὸ ὅτι

δοξάζειν ἔστι, καὶ τὸ διότι· τοῦτο δὲ τὸ μέσον. ἢ εἰ μὲν

οὕτως ὑπολήψεται τὰ μὴ ἐνδεχόμενα ἄλλως ἔχειν ὥσπερ

(εχει) τοὺς ὁρισμοὺς δι᾽ ὧν αἱ ἀποδείξεις, οὐ δοξάσει ἀλλ᾽ ἐπι-

στήσεται· εἰ δ᾽ ἀληθῆ μὲν εἶναι, οὐ μέντοι ταῦτά γε αὐτοῖς

20

ὑπάρχειν κατ᾽ οὐσίαν καὶ κατὰ τὸ εἶδος, δοξάσει καὶ οὐκ

ἐπιστήσεται ἀληθῶς, καὶ τὸ ὅτι καὶ τὸ διότι, ἐὰν μὲν διὰ

τῶν ἀμέσων δοξάσηι· ἐὰν δὲ μὴ διὰ τῶν ἀμέσων, τὸ ὅτι

μόνον δοξάσει; τοῦ δ᾽ αὐτοῦ δόξα καὶ ἐπιστήμη οὐ πάντως

ἐστίν, ἀλλ᾽ ὥσπερ καὶ ψευδὴς καὶ ἀληθὴς τοῦ αὐτοῦ τρό-

25

πον τινά, οὕτω καὶ ἐπιστήμη καὶ δόξα τοῦ αὐτοῦ. καὶ γὰρ

δόξαν ἀληθῆ καὶ ψευδῆ ὡς μέν τινες λέγουσι τοῦ αὐτοῦ

εἶναι, ἄτοπα συμβαίνει αἱρεῖσθαι ἄλλα τε καὶ μὴ δοξά-

ζειν ὁ δοξάζει ψευδῶς· ἐπεὶ δὲ τὸ αὐτὸ πλεοναχῶς λέγε-

ται, ἔστιν ὡς ἐνδέχεται, ἔστι δ᾽ ὡς οὔ. τὸ μὲν γὰρ

30

σύμμετρον εἶναι τὴν διάμετρον ἀληθῶς δοξάζειν ἄτοπον·

ἀλλ᾽ ὅτι ἡ διάμετρος, περὶ ἣν αἱ δόξαι, τὸ αὐτό, οὕτω τοῦ

αὐτοῦ, τὸ δὲ τί ἦν εἶναι ἑκατέρωι κατὰ τὸν λόγον οὐ τὸ αὐτό.

ὁμοίως δὲ καὶ ἐπιστήμη καὶ δόξα τοῦ αὐτοῦ. ἡ μὲν γὰρ

οὕτως τοῦ ζώιου ὥστε μὴ ἐνδέχεσθαι μὴ εἶναι ζῶιον, ἡ δ᾽

35

ὥστ᾽ ἐνδέχεσθαι, οἷον εἰ ἡ μὲν ὅπερ ἀνθρώπου ἐστίν, ἡ δ᾽

ἀνθρώπου μέν, μὴ ὅπερ δ᾽ ἀνθρώπου. τὸ αὐτὸ γὰρ ὅτι ἄν-

θρωπος, τὸ δ᾽ ὡς οὐ τὸ αὐτό.

 

Φανερὸν δ᾽ ἐκ τούτων ὅτι οὐδὲ δοξάζειν ἅμα τὸ αὐτὸ

καὶ ἐπίστασθαι ἐνδέχεται. ἅμα γὰρ ἂν ἔχοι ὑπόληψιν τοῦ

89b

ἄλλως ἔχειν καὶ μὴ ἄλλως τὸ αὐτό· ὅπερ οὐκ ἐνδέχεται.

ἐν ἄλλωι μὲν γὰρ ἑκάτερον εἶναι ἐνδέχεται τοῦ αὐτοῦ ὡς εἴ-

ρηται, ἐν δὲ τῶι αὐτῶι οὐδ᾽ οὕτως οἷόν τε· ἕξει γὰρ ὑπόλη-

ψιν ἅμα, οἷον ὅτι ὁ ἄνθρωπος ὅπερ ζῶιον (τοῦτο γὰρ ἦν τὸ

5

μὴ ἐνδέχεσθαι εἶναι μὴ ζῶιον) καὶ μὴ ὅπερ ζῶιον· τοῦτο γὰρ

ἔστω τὸ ἐνδέχεσθαι.

 

Τὰ δὲ λοιπὰ πῶς δεῖ διανεῖμαι ἐπί τε διανοίας καὶ

νοῦ καὶ ἐπιστήμης καὶ τέχνης καὶ φρονήσεως καὶ σοφίας,

τὰ μὲν φυσικῆς τὰ δὲ ἠθικῆς θεωρίας μᾶλλόν ἐστιν.

 

 

34

 

10

Ἡ δ᾽ ἀγχίνοιά ἐστιν εὐστοχία τις ἐν ἀσκέπτωι χρόνωι

τοῦ μέσου, οἷον εἴ τις ἰδὼν ὅτι ἡ σελήνη τὸ λαμπρὸν ἀεὶ ἔχει

πρὸς τὸν ἥλιον, ταχὺ ἐνενόησε διὰ τί τοῦτο, ὅτι διὰ τὸ λάμ-

πειν ἀπὸ τοῦ ἡλίου· ἢ διαλεγόμενον πλουσίωι ἔγνω διότι δα-

νείζεται· ἢ διότι φίλοι, ὅτι ἐχθροὶ τοῦ αὐτοῦ. πάντα γὰρ

15

τὰ αἴτια τὰ μέσα [ὁ] ἰδὼν τὰ ἄκρα ἐγνώρισεν. τὸ λαμπρὸν

εἶναι τὸ πρὸς τὸν ἥλιον ἐφ᾽ οὗ Α, τὸ λάμπειν ἀπὸ τοῦ ἡλίου

Β, σελήνη τὸ Γ. ὑπάρχει δὴ τῆι μὲν σελήνηι τῶι Γ τὸ Β,

τὸ λάμπειν ἀπὸ τοῦ ἡλίου· τῶι δὲ Β τὸ Α, τὸ πρὸς τοῦτ᾽

εἶναι τὸ λαμπρόν, ἀφ᾽ οὗ λάμπει· ὥστε καὶ τῶι Γ τὸ Α

20

διὰ τοῦ Β.