Hochschule Augsburg		Name:	
Fachbereich Elektrotechnik		Semester:	
Ausgewählte Kapitel der Mathematik		WS 2013/2014	Seite 1/7
	Prüfungsfach: Prüfungstermin: Prüfer: Hilfsmittel: Prüfungszeit:	Ausgewählte Kapitel de 14.1.2014 Prof. Dr. Zacherl, Prof. Formelsammlung (1 DI 60 Minuten	Dr. Hollmann
Tragen Sie Namen und Semester in jedes Blatt dieser Angabe ein. Bearbeiten Sie die nachfolgenden Aufgaben. Verwenden Sie hierzu den jeweils freigelassenen Raum, erforderlichenfalls die Rückseite der Aufgabenblätter. Falls dies noch nicht ausreicht, sind Beiblätter zu verwenden (bitte mit Namen und Semester versehen und eindeutig den Aufgaben zuordnen). Benutzen Sie zur Bearbeitung bitte keinen Bleistift. Begründen Sie jeweils Ihre Antwort. Lösungen ohne Begründungen werden nicht gewertet. Viel Erfolg!			
Aufgabe 1 (<u>Gradient)</u>		(6 Punkte)
,	Sie den Gradienten für constant $z = x^2 - 4xy + 2z^3$	das elektrostatische Potential	
b) Berechnen Sie das elektrische Feld $\vec{E}(\vec{r})$ zum elektrostatischen Potential $\Phi(x,y,z)$.			
c) Für welche	Punkte des Raumes zeigt	t $ec{E}(ec{r})$ in x-Richtung ?	

Hochschule Augsburg	Name:	
Fachbereich Elektrotechnik	Semester:	
Ausgewählte Kapitel der Mathematik	WS 2013/2014	Seite 2/7
<u>Aufgabe 2 (Divergenz, Rotation)</u>		(7 Punkte)
Gegeben sei das Vektorfeld		
$\vec{F}(x, y, z) = \begin{pmatrix} 3x^2y - 2z^3 \\ x^3 + 2yz^2 \\ 2y^2z - 6xz^2 \end{pmatrix}$		
a) Bestimmen Sie die Divergenz des	Vektorfeldes	
Ist \vec{F} quellenfrei ?		
b) Berechnen Sie $rot\vec{F}$.		

Ist \vec{F} wirbelfrei?

Hochschule	Augsburg
------------	----------

Name:_____

Fachbereich Elektrotechnik

Semester:_____

Ausgewählte Kapitel der Mathematik

WS 2013/2014

Seite 3/7

a) Gegeben sei das Vektorfeld $\vec{F}(x, y, z) = \begin{pmatrix} 3yz \\ x \\ y \end{pmatrix}$ und die Kurve C

mit der Parameterdarstellung $\vec{r}(t) = (\cos t, \sin t, -\cos t)$ mit $0 \le t \le \pi$.

Berechnen Sie das Wegintegral $\int_{C} \vec{F} \cdot d\vec{r}$.

- b) Ist $\int_{C} \vec{F} \cdot d\vec{r}$ wegunabhängig?
- c) Bestimmen Sie eine weitere (möglichst einfache lineare) Kurve C, die den gleichen Anfangsund Endpunkt wie C hat.

Berechnen Sie nun das Wegintegral $\int_C \vec{F} \cdot d\vec{r}$.

Hochschule Augsburg	Name:	
Fachbereich Elektrotechnik	Semester:	
Ausgewählte Kapitel der Mathematik	WS 2013/2014	Seite 4/7

<u>Aufgabe 4 (Oberflächenintegral, Satz von Gauss)</u>

(6 Punkte)

Sei A die Oberfläche eines Zylinders mit Radius R und Höhe h, der im Ursprung auf der xy-Ebene senkrecht steht.

Sei
$$\vec{F}(x, y, z) = \begin{pmatrix} y - z^2 x \\ x - z^2 y \\ z^3 \end{pmatrix}$$

Berechnen Sie $\oint_{(A)} \vec{F}(\vec{r}) \cdot d\vec{A}$ mit Hilfe des Gaußschen Satzes.

Hoch	schule Augsburg	Name:	
Fach	bereich Elektrotechnik	Semester:	
_	gewählte Kapitel der nematik	WS 2013/2014	Seite 5/7
Aufga	abe 4 (Kombinationen, Varia	tionen, Wahrscheinlichkeiten)	(10 Punkte)
Eı		ang eines Fußballspiels getippt werde, bei denen jede der beiden Mannsch	
i) W	ie viele <u>verschiedene</u> Endresultat	te sind möglich ?	
ii) W	Vie groß ist die Wahrscheinlichkei	it, dass im getippten Spiel genau 4 T	ore erzielt werden?
b) M	it drei Würfeln wird gleichzeitig	gewürfelt.	
\mathbf{W}_{1}	ie groß ist die Wahrscheinlichkeit	, dass	
	i) genau drei Sechser		
	ii) genau zwei Sechser		
	iii) höchstens ein Sechser		
	,		
	gewürfelt werden?		

Hochschule Augsburg	Name:	
Fachbereich Elektrotechnik	Semester:	
Ausgewählte Kapitel der Mathematik	WS 2013/2014	Seite 6/7

Hochschule Augsburg	Name:	
Fachbereich Elektrotechnik	Semester:	
Ausgewählte Kapitel der Mathematik	WS 2013/2014	Seite 7/7